KENNETH J.ARROW
1. Bireysel tercihler gibi sosyal tercihlerde tamlık ve geçişlilik özelliklerine sahip olmalıdır.
2. Sosyal refah tercihleri bireysel tercihlerden bağımsız biçimde empoze edilmemelidir.
3. Toplum A durumunu B durumuna sadece 1 kişi istiyor diye tercih etmemelidir. Sosyal refah tercihleri (diktatör) tercihlerine dayanmamalıdır.
4. Eğer A durumu B durumuna bireylerce tercih edilmişse ve eğer daha sonra bireysel diğer kişilerin A değerlendirmesinde bir gerileme olmadan bir kişinin veya daha fazla kişinin A durumunu B durumuna tercih etmeleri biçiminde değişmişse, A durumu B durumuna sosyal olarak yine tercih edilir.
5. Bir sosyal refah tercihinin diğerine göre sıralaması alternatif tercihlerden bağımsızdır. Eğer A, B ve C gibi 3 durum söz konusu iken A durumu B durumuna ve B durumu C durumuna tercih edilmişse, B durumu olmadığında A durumu C durumuna yine tercih edilir.
Bu 5 varsayımın birlikte gerçekleşmesi mümkün olmadığından Toplum Refahı hiç bir zaman ve hiç bir yerde maksimum olamaz.
Arrow'un kuramı matematiksel bir sonuçtur, ancak sıkça "Adil bir oylama yöntemi yoktur", "Bütün dereceleme yöntemleri kusurludur" veya "Kusursuz olan yegâne oylama yöntemi diktatörlüktür" gibi matematik dışı ifadelerle dile getirilir. Bu söylemler Arrow'un sonucunu basite indirgemekte ve genelgeçer gerçekler olarak kabul görmemektedirler. Arrow'un kuramının bize söylediği şey, bir oylama düzeneğinin yukarıda sayılan koşulların hepsini aynı anda sağlamasının mümkün olmadığıdır.
1. Bireysel tercihler gibi sosyal tercihlerde tamlık ve geçişlilik özelliklerine sahip olmalıdır.
2. Sosyal refah tercihleri bireysel tercihlerden bağımsız biçimde empoze edilmemelidir.
3. Toplum A durumunu B durumuna sadece 1 kişi istiyor diye tercih etmemelidir. Sosyal refah tercihleri (diktatör) tercihlerine dayanmamalıdır.
4. Eğer A durumu B durumuna bireylerce tercih edilmişse ve eğer daha sonra bireysel diğer kişilerin A değerlendirmesinde bir gerileme olmadan bir kişinin veya daha fazla kişinin A durumunu B durumuna tercih etmeleri biçiminde değişmişse, A durumu B durumuna sosyal olarak yine tercih edilir.
5. Bir sosyal refah tercihinin diğerine göre sıralaması alternatif tercihlerden bağımsızdır. Eğer A, B ve C gibi 3 durum söz konusu iken A durumu B durumuna ve B durumu C durumuna tercih edilmişse, B durumu olmadığında A durumu C durumuna yine tercih edilir.
Bu 5 varsayımın birlikte gerçekleşmesi mümkün olmadığından Toplum Refahı hiç bir zaman ve hiç bir yerde maksimum olamaz.
Arrow'un kuramı matematiksel bir sonuçtur, ancak sıkça "Adil bir oylama yöntemi yoktur", "Bütün dereceleme yöntemleri kusurludur" veya "Kusursuz olan yegâne oylama yöntemi diktatörlüktür" gibi matematik dışı ifadelerle dile getirilir. Bu söylemler Arrow'un sonucunu basite indirgemekte ve genelgeçer gerçekler olarak kabul görmemektedirler. Arrow'un kuramının bize söylediği şey, bir oylama düzeneğinin yukarıda sayılan koşulların hepsini aynı anda sağlamasının mümkün olmadığıdır.
Arrow, öne sürdüğü kıstaslar için "adil" sıfatını kullanmıştı. Gerçekten de, Pareto verimliliği ve dayatmama koşulları önemsiz ayrıntılar gibi görünüyor. Ancak ilgisiz alternatiflerin bağımsızlığı (İAB) kıstasını göz önüne alırsak; diyelim ki Ahmet, Kemal ve Osman liderlik için yarışmaktadırlar, ve Osman gözde adaydır. Arrow'un kuramına göre, İAB koşulunun sağlanması için örneğin Kemal'in yarış dışı kalması durumunun Osman'ı ve Ahmet'i etkilememesi gerekir. Ancak Kemal'in alacağı oyların Ahmet'e kayması sonucu seçimi Ahmet kazanmaktadır. Bu durum pek çok kişi tarafından"haksızlık" olarak yorumlanır. Ancak olmaktadır, ve Arrow'un kuramı da bu "haksız" durumların, başka bir kıstası gevşetmedikçe tümüyle önlenemeyeceğini ortaya koymaktadır. Kusursuz sistem olamamaktadır. Dolayısıyla Arrow'un kuramının ışığı doğrultusunda sorulması gereken ana soru şudur: hangi kıstası gevşetmeli?
Çeşitli kuramcılar ve meraklılar bu paradokstan çıkmak için İAB kıstasını gevşetmeyi önermişlerdir. Dereceli seçim sistemlerinin destekçileri İAB'nin gereğinden kuvvetli bir kıstas olduğunu ve gerçek hayattaki durumlarda pek tutmadığını öne sürmektedirler. Gerçekte de en kullanışlı seçim sistemlerinin çoğunda delinen kıstas İAB olmaktadır.
Bu görüşün destekçileri döngüsel tercihlerin dolaylı olarak standart İAB'yi deleceğine dikkati çekmektedirler. Eğer seçmenler aşağıdaki gibi oy verirse...
7 oy A > B > C şeklinde,
6 oy B > C > A şeklinde5 oy C > A > B şeklinde...bu durumda grubun net tercih sıralaması A > B > C > A şeklinde oluşur. Bu durumda ilk tercihte çoğunluğu sağlayan adayın kazanması şeklindeki temel çoğunluk ilkesini sağlayan ve tek bir kazanan seçen tüm sistemler İABK'ını delecektir. Genelliği kaybetmeden, yukarıdaki oy yanayında B'nin seçimden çekildiğini düşünecek olursak, oy yanayı aşağıdaki aşağıdakine dönüşür:
7 oy A > C şeklinde
11 oy C > A şeklinde
Böylece, her ne kadar sistemdeki değişim (zaten kazanamayacak olan B'nin çekilmesi) "ilgisiz" olsa da C kazanır.
Dolayısıyla, Arrow'un kuramının gerçekte bize gösterdiği şey seçim düzeneğinin öyle önemsiz bir ayrıntı olmadığı, ve çoğu oylama düzeneğinin sonucunu tahmin etmekte oyun kuramının kullanılması gerektiğidir. Bu hayalkırıcı bir sonuç gibi gözükebilir, zira oyunlarda verimli bir dengelenim oluşmak zorunda değildir, örneğin bir oylama sonucunda aslında kimsenin ilk sıraya koymadığı ama yine de oy verdiği bir alternatif seçimi kazanabilir.
Aşağıdaki tartışma Arrow'un paradoksuyla başetmenin "doğru" yolununun kıstaslardan birini ortadan kaldırmakla (veya gevşetmekle) çözüleceği düşüncesi üzerine kuruludur. Bu doğrultuda İAB kriteri en doğal adaydır. Ancak başka "çıkar yol"lar da vardır.
Duncan Black, seçeneklerin değerlendirilmesinde tek bir dünya görüşünün temel alınması halinde Arrow'un bütün belitlerinin çoğunluk kuralı aracılığıyla sağlanacağını göstermiştir. Matematiksel açıdan söylersek, toplumsal refah işlevinin etki alanını uygun biçimde kısıtlarsak sorun yaşamayacağımız anlamına gelir. Örneğin, bir kurumun sorunlarını çözmek için iki ana dünya görüşü varsa ve kurumun başkan adayları kendi aralarında küçük farklar gösterdikleri halde görüş açısından bu iki ana yaklaşımdan birinin yakınında (odağında) bulunuyorsa, bu dünya görüşlerinden birini devre dışı bırakmak, Arrow'un kıstaslarının sağlanmasını sağlayabilecektir. Black'in getirdiği kısıt, yani "tek odaklı seçenek" ilkesi, alternatif kümede önceden belirlenmiş bir P doğrusal sıralaması olduğunu söyler. Her seçmenin gözde adayı bu sıralamada belli bir yerdedir ve bu gözde seçenekten uzaklaştıkça seçmen alternatiflerden soğur.
Gerçekten de pek çok toplumsal refah işlevi, etki alanlarındaki böyle bir kısıtlama sonucunda Arrow'un kıstaslarını sağlamaktadır. Ancak bu şekilde herhangi bir kısıtlama söz konusu olduğunda, eğer Arrow'un kıstaslarını sağlayan herhangi bir toplumsal refah işlevi varsa, "çoğunluğun oyu"nun da Arrow'un kıstaslarını sağlayacağı ispat edilmiştir. Dolayısıyla tek odaklı seçimlerde çeşitli açılardan en uygun seçim düzeneği "dereceli seçenekler" değil de "çoğunluğun oyu" olmaktadır.
Paradoksun "çıkar yol"larından biri de alternatifler kümesinin elemanlarını ikiye düşürmektir. Böylece ikiden fazla seçenek arasında seçim yapmak gerektiğinde, seçenekleri çiftleştiren ve çiftler halinde oy verdiren bir düzenek kurmak çok cazip bir seçenek olarak görülebilir. Bu seçenek ilk bakışta ne kadar cazip görünürse görünsün, genellikle İAB kıstasını bırakın Pareto verimliliği ilkesini dahi sağlamaktan uzaktır. Çiftlerin belirlenme sırası, sonuç üzerinde çok etkili olmaktadır. Bu aslında illâ ki kötü bir özellik sayılmaz. Pek çok spor dalında turnuva düzeneği (temel olarak bir çiftleştirme düzeneğidir) kullanılmaktadır. Bu durum zayıf takımlara önemli avantaj sağlamakta, dolayısıyla turnuvaya heyecan ve gerilim katmaktadır.
Arrow'un özgün çalışmasının ardından başka olanaksızlıklar ve olanaklılıklar tespit eden topyekûn bir kültür gelişmiştir. Örneğin toplumun tercihinin yarattığı toplumsal tercih sıralama düzeneğini, geçişlilik koşulunu değil de sadece döngüsel olmama koşulunu (eğer a, b'den büyükse ve b, c'den büyükse c, a'dan büyük değildir) sağlayacak şekilde zayıflatırsak Arrow'un kıstaslarını sağlayan toplumsal tercih kuralları oluşturmak mümkündür.
Ekonomici ve Nobel ödülü sahibi Amartya Sen başka iki alternatif daha sunmuştur. Hem geçişliliği zayıflatmayı hem de Pareto ilkesini devre dışı bırakmayı önermiştir. Arrow'un tüm kıstaslarıyla uyuşan ancak sadece yarı-geçişken sonuçlar üreten oylama sistemlerinin varlığını ortaya koymuştur.
wow....i love all the update you got here so nice and wonderful
YanıtlaSilYou have a great post here.
YanıtlaSilAlso, I suggest you should get boAt Smartwatch for yourself. It's one of the best I have ever come across. You won't regret it.